76 research outputs found

    Transcranial ultrasound simulation with uncertainty estimation

    Get PDF
    Transcranial ultrasound simulations are increasingly used to predict in situ exposure parameters for ultrasound therapies in the brain. However, there can be considerable uncertainty in estimating the acoustic medium properties of the skull and brain from computed tomography (CT) images. This paper shows how the resulting uncertainty in the simulated acoustic field can be predicted in a computationally efficient way using linear uncertainty propagation. Results for a representative transcranial simulation using a focused bowl transducer at 500 kHz show good agreement with unbiased uncertainty estimates obtained using Monte Carlo

    A Learned Born Series for Highly-Scattering Media

    Get PDF
    A new method for solving the wave equation is presented, called the learned Born series (LBS), which is derived from a convergent Born Series but its components are found through training. The LBS is shown to be significantly more accurate than the convergent Born series for the same number of iterations, in the presence of high contrast scatterers, while maintaining a comparable computational complexity. The LBS is able to generate a reasonable prediction of the global pressure field with a small number of iterations, and the errors decrease with the number of learned iterations.Comment: 6 pages, 1 figur

    A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasound

    Get PDF
    Transcranial ultrasound therapy is increasingly used for the non-invasive treatment of brain disorders. However, conventional numerical wave solvers are currently too computationally expensive to be used online during treatments to predict the acoustic field passing through the skull (e.g., to account for subject-specific dose and targeting variations). As a step towards real-time predictions, in the current work, a fast iterative solver for the heterogeneous Helmholtz equation in 2D is developed using a fully-learned optimizer. The lightweight network architecture is based on a modified UNet that includes a learned hidden state. The network is trained using a physics-based loss function and a set of idealized sound speed distributions with fully unsupervised training (no knowledge of the true solution is required). The learned optimizer shows excellent performance on the test set, and is capable of generalization well outside the training examples, including to much larger computational domains, and more complex source and sound speed distributions, for example, those derived from x-ray computed tomography images of the skull.Comment: 23 pages, 13 figure

    Classical and learned MR to pseudo-CT mappings for accurate transcranial ultrasound simulation

    Get PDF
    Model-based treatment planning for transcranial ultrasound therapy typically involves mapping the acoustic properties of the skull from an x-ray computed tomography (CT) image of the head. Here, three methods for generating pseudo-CT images from magnetic resonance (MR) images were compared as an alternative to CT. A convolutional neural network (U-Net) was trained on paired MR-CT images to generate pseudo-CT images from either T1-weighted or zero-echo time (ZTE) MR images (denoted tCT and zCT, respectively). A direct mapping from ZTE to pseudo-CT was also implemented (denoted cCT). When comparing the pseudo-CT and ground truth CT images for the test set, the mean absolute error was 133, 83, and 145 Hounsfield units (HU) across the whole head, and 398, 222, and 336 HU within the skull for the tCT, zCT, and cCT images, respectively. Ultrasound simulations were also performed using the generated pseudo-CT images and compared to simulations based on CT. An annular array transducer was used targeting the visual or motor cortex. The mean differences in the simulated focal pressure, focal position, and focal volume were 9.9%, 1.5 mm, and 15.1% for simulations based on the tCT images, 5.7%, 0.6 mm, and 5.7% for the zCT, and 6.7%, 0.9 mm, and 12.1% for the cCT. The improved results for images mapped from ZTE highlight the advantage of using imaging sequences which improve contrast of the skull bone. Overall, these results demonstrate that acoustic simulations based on MR images can give comparable accuracy to those based on CT

    Effect of carbocisteine in prevention of exacerbation of chronic obstructive pulmonary disease (CAPRI study): an observational study

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is a chronic and progressive lung disease characterized by irreversible airflow obstruction, airway inflammation , oxidative stress and, often, mucus hypersecretion. The aim of thisstudy is to determine if carbocisteine, a mucolytic and antioxidant agent, administered daily for 12 months, can reduce exacerbation frequency in COPD patients

    Treating severe allergic asthma with anti-IgE monoclonal antibody (omalizumab): a review

    Get PDF
    Increased asthma severity is not only associated with enhanced recurrent hospitalization and mortality but also with higher social costs. Several cases of asthma are atopic in nature, with the trigger for acute asthma attacks and chronic worsening of inflammation being allergens inducing an immune, IgE mediated response. Anti-inflammatory treatments are effective for most of asthma patients, but there are subjects whose disease is incompletely controlled by inhaled or systemic corticosteroids and these patients account for about 50% of the healthcare costs of asthma. Omalizumab is a biological engineered, humanized recombinant monoclonal anti-IgE antibody developed for the treatment of allergic diseases and with clear efficacy in adolescent and adult patients with severe allergic asthma. The anti-IgE antibody inhibits IgE functions blocking free serum IgE and inhibiting their binding to cellular receptors. By reducing serum IgE levels and IgE receptor expression on inflammatory cells in the context of allergic cascade, omalizumab has demonstrated to be a very useful treatment of atopic asthma, improving quality of life of patients with severe persistent allergic asthma that is inadequately controlled by currently available asthma medications. Several trials have demonstrated that this therapy is well tolerated and significantly improves symptoms and disease control, reducing asthma exacerbations and the need to use high dosage of inhaled corticosteroids

    Effects of combination therapy indacaterol/glycopyrronium versus tiotropium on moderate to severe COPD: Evaluation of impulse oscillometry and exacerbation rate

    Get PDF
    Abstract Background Small airways are considered the major site of airflow limitation in COPD. Impulse oscillometry (IOS) is a forced oscillation technique, which provides passive measurement of lung mechanics. It can differentiate small airway from large airway obstruction and is more sensitive than spirometry for peripheral airway disease. In this study the efficacy of the combination of Indacaterol/Glycopirronium (IND/GLY) versus Tiotropium on airway resistance (R5, R20, R5–20), lung reactance (X) and resonant frequency in moderate to severe COPD patients has been evaluated. We also evaluated inspiratory capacity (IC), forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), exacerbation rate and quality of life. Methods Forty patients were monitored with forced oscillation technique and spirometry. Patients were randomized in 2 groups: 20 received fixed dose once daily Indacaterol/Glycopyrronium (Group A) and 20 received single Tiotropium (Group B). The oscillometry parameters were the measure of resistance in the airways at 5 Hz (R5), at 20 Hz (R20) and the lung reactance (X). Results There was a statistically significant difference between pre-dosing at V1 and at follow up visits in R5, R20 and X values in patients receiving dual bronchodilation but not in control group. Pre-dosing IC value at follow up visits in patients receiving dual bronchodilation had a statistical significant variation. Conclusions The “new” bronchodilator combination LABA/LAMA significantly reduces bronchial obstruction in small airways too. The oscillometry demonstrated greater sensitivity compared with spirometry for monitoring outcome measures of airway obstruction and the effect of long-term therapy
    • …
    corecore